
http://www.6502.org/source/floats/wozfp1.txt
31 October 2004

TABLE OF CONTENTS

Floating Point Routines for the 6502 by Roy Rankin and Steve Wozniak

Originally published in the August 1976 issue of Dr. Dobb's Journal, these
floating point routines allow 6502 users to perform most of the more popular and
desired floating point and transcendental functions, namely: Natural Log, Common
Log, Addition, Subtraction, Multiplication, Division, and conversions between
floating and fixed point numbers.

Errata for Rankin's 6502 Floating Point Routines by Roy Rankin

In the November/December issue of Dr. Dobb's Journal Roy Rankin published three
error corrections to the Floating Point Routines presented above.

Floating Point Implementation in the Apple II by Steve Wozniak

An almost identical set of the above routines appeared in the original manual
for the Apple II (the Red Book, January 1978). Documentation for these routines
appeared in another book, the Wozpak II, in November 1979.

===

Floating Point Routines for the 6502 by Roy Rankin and Steve Wozniak

Originally published in the August 1976 issue of Dr. Dobb's Journal, these
floating point routines allow 6502 users to perform most of the more popular and
desired floating point and transcendental functions, namely: Natural Log, Common
Log, Addition, Subtraction, Multiplication, Division, and conversions between
floating and fixed point numbers.

Dr. Dobb's Journal, August 1976, pages 17-19.

Floating Point Routines for the 6502

by Roy Rankin, Department of Mechanical Engineering,
 Stanford University, Stanford, CA 94305
 (415) 497-1822

and

 Steve Wozniak, Apple Computer Company
 770 Welch Road, Suite 154
 Palo Alto, CA 94304
 (415) 326-4248

Editor's Note: Although these routines are for the 6502, it
would appear that one could generate equivalent routines for
most of the "traditional" microprocessors, relatively easily,
by following the flow of the algorithms given in the excellent
comments included in the program listing. This is particularly
true of the transcendental functions, which were directly modeled
after well-known and proven algorithms, and for which, the
comments are relatively machine independent.

These floating point routines allow 6502 users to perform
most of the more popular and desired floating point and
transcendental functions, namely:

Natural Log - LOG
Common Log - LOG10
Exponential - EXP
Floating Add - FADD
Floating Subtract - FSUB
Floating Multiply - FMUL
Floating Divide - FDIV
Convert Floating to Fixed - FIX
Convert Fixed to Floating - FLOAT

They presume a four-byte floating point operand consisting of
a one-byte exponent ranging from -128 to +127 and a
24-bit two's complement mantissa between 1.0 and 2.0.

The floating point routines were done by Steve Wozniak,
one of the principals in Apple Computer Company. The
transcendental functions were patterned after those offered by
Hewlett-Packard for their HP2100 minicomputer (with some
modifications), and were done by Roy Rankin, a Ph.D. student
at Stanford University.

There are three error traps; two for overflow, and one for
prohibited logarithm argument. ERROR (1D06) is the error
exit used in the event of a non-positive log argument. OVFLW
(1E3B) is the error exit for overflow occuring during calculation
of e to some power. OVFL (1FE4) is the error exit for
overflow in all of the floating point routines. There is no
trap for underflow; in such cases, the result is set to 0.0.

All routines are called and exited in a uniform manner:
The arguments(s) are placed in the specified floating point
storage locations (for specifics, see the documentation preceeding
each routine in the listing), then a JSR is used to
enter the desired routine. Upon normal completion, the
called routine is exited via a subroutine return instruction (RTS).

Note: The preceeding documentation was written by the Editor, based
on phone conversations with Roy and studying the listing. There is a
high probability that it is correct. However, since it was not written
nor reviewed by the authors of these routines, the preceeding
documentation may contain errors in concept or in detail.
 -- JCW, Jr.

 In the Exponent:
 00 Represents -128
 ...
 7F Represents -1
 80 Represents 0
 81 Represents +1
 ...
 FF Represents +127

 Exponent Two's Complement Mantissa
 SEEEEEEE SM.MMMMMM MMMMMMMM MMMMMMMM
 n n+1 n+2 n+3

 * JULY 5, 1976
 * BASIC FLOATING POINT ROUTINES
 * FOR 6502 MICROPROCESSOR
 * BY R. RANKIN AND S. WOZNIAK
 *
 * CONSISTING OF:
 * NATURAL LOG
 * COMMON LOG
 * EXPONENTIAL (E**X)
 * FLOAT FIX
 * FADD FSUB
 * FMUL FDIV
 *
 *
 * FLOATING POINT REPRESENTATION (4-BYTES)
 * EXPONENT BYTE 1
 * MANTISSA BYTES 2-4
 *
 * MANTISSA: TWO'S COMPLIMENT REPRESENTATION WITH SIGN IN
 * MSB OF HIGH-ORDER BYTE. MANTISSA IS NORMALIZED WITH AN
 * ASSUMED DECIMAL POINT BETWEEN BITS 5 AND 6 OF THE HIGH-ORDER
 * BYTE. THUS THE MANTISSA IS IN THE RANGE 1. TO 2. EXCEPT
 * WHEN THE NUMBER IS LESS THAN 2**(-128).
 *
 * EXPONENT: THE EXPONENT REPRESENTS POWERS OF TWO. THE
 * REPRESENTATION IS 2'S COMPLIMENT EXCEPT THAT THE SIGN
 * BIT (BIT 7) IS COMPLIMENTED. THIS ALLOWS DIRECT COMPARISON
 * OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING
 * NUMERICAL SEQUENCE RANGING FROM $00 (-128) TO $FF (+127)
 * ($ MEANS NUMBER IS HEXADECIMAL).
 *
 * REPRESENTATION OF DECIMAL NUMBERS: THE PRESENT FLOATING
 * POINT REPRESENTATION ALLOWS DECIMAL NUMBERS IN THE APPROXIMATE
 * RANGE OF 10**(-38) THROUGH 10**(38) WITH 6 TO 7 SIGNIFICANT
 * DIGITS.
 *
 *
0003 ORG 3 SET BASE PAGE ADRESSES
0003 EA SIGN NOP
0004 EA X2 NOP EXPONENT 2
0005 00 00 00 M2 BSS 3 MANTISSA 2
0008 EA X1 NOP EXPONENT 1
0009 00 00 00 M1 BSS 3 MANTISSA 1
000C E BSS 4 SCRATCH
0010 Z BSS 4
0014 T BSS 4
0018 SEXP BSS 4
001C 00 INT BSS 1
 *
1D00 ORG $1D00 STARTING LOCATION FOR LOG
 *
 *
 * NATURAL LOG OF MANT/EXP1 WITH RESULT IN MANT/EXP1
 *
1D00 A5 09 LOG LDA M1
1D02 F0 02 BEQ ERROR

1D04 10 01 BPL CONT IF ARG>0 OK
1D06 00 ERROR BRK ERROR ARG<=0
 *
1D07 20 1C 1F CONT JSR SWAP MOVE ARG TO EXP/MANT2
1D0A A5 04 LDA X2 HOLD EXPONENT
1D0C A0 80 LDY =$80
1D0E 84 04 STY X2 SET EXPONENT 2 TO 0 ($80)
1D10 49 80 EOR =$80 COMPLIMENT SIGN BIT OF ORIGINAL EXPONENT
1D12 85 0A STA M1+1 SET EXPONENT INTO MANTISSA 1 FOR FLOAT
1D14 A9 00 LDA =0
1D16 85 09 STA M1 CLEAR MSB OF MANTISSA 1
1D18 20 2C 1F JSR FLOAT CONVERT TO FLOATING POINT
1D1B A2 03 LDX =3 4 BYTE TRANSFERS
1D1D B5 04 SEXP1 LDA X2,X
1D1F 95 10 STA Z,X COPY MANTISSA TO Z
1D21 B5 08 LDA X1,X
1D23 95 18 STA SEXP,X SAVE EXPONENT IN SEXP
1D25 BD D1 1D LDA R22,X LOAD EXP/MANT1 WITH SQRT(2)
1D28 95 08 STA X1,X
1D2A CA DEX
1D2B 10 F0 BPL SEXP1
1D2D 20 4A 1F JSR FSUB Z-SQRT(2)
1D30 A2 03 LDX =3 4 BYTE TRANSFER
1D32 B5 08 SAVET LDA X1,X SAVE EXP/MANT1 AS T
1D34 95 14 STA T,X
1D36 B5 10 LDA Z,X LOAD EXP/MANT1 WITH Z
1D38 95 08 STA X1,X
1D3A BD D1 1D LDA R22,X LOAD EXP/MANT2 WITH SQRT(2)
1D3D 95 04 STA X2,X
1D3F CA DEX
1D40 10 F0 BPL SAVET
1D42 20 50 1F JSR FADD Z+SQRT(2)
1D45 A2 03 LDX =3 4 BYTE TRANSFER
1D47 B5 14 TM2 LDA T,X
1D49 95 04 STA X2,X LOAD T INTO EXP/MANT2
1D4B CA DEX
1D4C 10 F9 BPL TM2
1D4E 20 9D 1F JSR FDIV T=(Z-SQRT(2))/(Z+SQRT(2))
1D51 A2 03 LDX =3 4 BYTE TRANSFER
1D53 B5 08 MIT LDA X1,X
1D55 95 14 STA T,X COPY EXP/MANT1 TO T AND
1D57 95 04 STA X2,X LOAD EXP/MANT2 WITH T
1D59 CA DEX
1D5A 10 F7 BPL MIT
1D5C 20 77 1F JSR FMUL T*T
1D5F 20 1C 1F JSR SWAP MOVE T*T TO EXP/MANT2
1D62 A2 03 LDX =3 4 BYTE TRANSFER
1D64 BD E1 1D MIC LDA C,X
1D67 95 08 STA X1,X LOAD EXP/MANT1 WITH C
1D69 CA DEX
1D6A 10 F8 BPL MIC
1D6C 20 4A 1F JSR FSUB T*T-C
1D6F A2 03 LDX =3 4 BYTE TRANSFER
1D71 BD DD 1D M2MB LDA MB,X
1D74 95 04 STA X2,X LOAD EXP/MANT2 WITH MB
1D76 CA DEX
1D77 10 F8 BPL M2MB
1D79 20 9D 1F JSR FDIV MB/(T*T-C)
1D7C A2 03 LDX =3
1D7E BD D9 1D M2A1 LDA A1,X
1D81 95 04 STA X2,X LOAD EXP/MANT2 WITH A1
1D83 CA DEX
1D84 10 F8 BPL M2A1
1D86 20 50 1F JSR FADD MB/(T*T-C)+A1

1D89 A2 03 LDX =3 4 BYTE TRANSFER
1D8B B5 14 M2T LDA T,X
1D8D 95 04 STA X2,X LOAD EXP/MANT2 WITH T
1D8F CA DEX
1D90 10 F9 BPL M2T
1D92 20 77 1F JSR FMUL (MB/(T*T-C)+A1)*T
1D95 A2 03 LDX =3 4 BYTE TRANSFER
1D97 BD E5 1D M2MHL LDA MHLF,X
1D9A 95 04 STA X2,X LOAD EXP/MANT2 WITH MHLF (.5)
1D9C CA DEX
1D9D 10 F8 BPL M2MHL
1D9F 20 50 1F JSR FADD +.5
1DA2 A2 03 LDX =3 4 BYTE TRANSFER
1DA4 B5 18 LDEXP LDA SEXP,X
1DA6 95 04 STA X2,X LOAD EXP/MANT2 WITH ORIGINAL EXPONENT
1DA8 CA DEX
1DA9 10 F9 BPL LDEXP
1DAB 20 50 1F JSR FADD +EXPN
1DAE A2 03 LDX =3 4 BYTE TRANSFER
1DB0 BD D5 1D MLE2 LDA LE2,X
1DB3 95 04 STA X2,X LOAD EXP/MANT2 WITH LN(2)
1DB5 CA DEX
1DB6 10 F8 BPL MLE2
1DB8 20 77 1F JSR FMUL *LN(2)
1DBB 60 RTS RETURN RESULT IN MANT/EXP1
 *
 * COMMON LOG OF MANT/EXP1 RESULT IN MANT/EXP1
 *
1DBC 20 00 1D LOG10 JSR LOG COMPUTE NATURAL LOG
1DBF A2 03 LDX =3
1DC1 BD CD 1D L10 LDA LN10,X
1DC4 95 04 STA X2,X LOAD EXP/MANT2 WITH 1/LN(10)
1DC6 CA DEX
1DC7 10 F8 BPL L10
1DC9 20 77 1F JSR FMUL LOG10(X)=LN(X)/LN(10)
1DCC 60 RTS
 *
1DCD 7E 6F LN10 DCM 0.4342945
 2D ED
1DD1 80 5A R22 DCM 1.4142136 SQRT(2)
 02 7A
1DD5 7F 58 LE2 DCM 0.69314718 LOG BASE E OF 2
 B9 0C
1DD9 80 52 A1 DCM 1.2920074
 80 40
1DDD 81 AB MB DCM -2.6398577
 86 49
1DE1 80 6A C DCM 1.6567626
 08 66
1DE5 7F 40 MHLF DCM 0.5
 00 00
 *
1E00 ORG $1E00 STARTING LOCATION FOR EXP
 *
 * EXP OF MANT/EXP1 RESULT IN MANT/EXP1
 *
1E00 A2 03 EXP LDX =3 4 BYTE TRANSFER
1E02 BD D8 1E LDA L2E,X
1E05 95 04 STA X2,X LOAD EXP/MANT2 WITH LOG BASE 2 OF E
1E07 CA DEX
1E08 10 F8 BPL EXP+2
1E0A 20 77 1F JSR FMUL LOG2(3)*X
1E0D A2 03 LDX =3 4 BYTE TRANSFER
1E0F B5 08 FSA LDA X1,X

1E11 95 10 STA Z,X STORE EXP/MANT1 IN Z
1E13 CA DEX
1E14 10 F9 BPL FSA SAVE Z=LN(2)*X
1E16 20 E8 1F JSR FIX CONVERT CONTENTS OF EXP/MANT1 TO AN INTEGER
1E19 A5 0A LDA M1+1
1E1B 85 1C STA INT SAVE RESULT AS INT
1E1D 38 SEC SET CARRY FOR SUBTRACTION
1E1E E9 7C SBC =124 INT-124
1E20 A5 09 LDA M1
1E22 E9 00 SBC =0
1E24 10 15 BPL OVFLW OVERFLOW INT>=124
1E26 18 CLC CLEAR CARRY FOR ADD
1E27 A5 0A LDA M1+1
1E29 69 78 ADC =120 ADD 120 TO INT
1E2B A5 09 LDA M1
1E2D 69 00 ADC =0
1E2F 10 0B BPL CONTIN IF RESULT POSITIVE CONTINUE
1E31 A9 00 LDA =0 INT<-120 SET RESULT TO ZERO AND RETURN
1E33 A2 03 LDX =3 4 BYTE MOVE
1E35 95 08 ZERO STA X1,X SET EXP/MANT1 TO ZERO
1E37 CA DEX
1E38 10 FB BPL ZERO
1E3A 60 RTS RETURN
 *
1E3B 00 OVFLW BRK OVERFLOW
 *
1E3C 20 2C 1F CONTIN JSR FLOAT FLOAT INT
1E3F A2 03 LDX =3
1E41 B5 10 ENTD LDA Z,X
1E43 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
1E45 CA DEX
1E46 10 F9 BPL ENTD
1E48 20 4A 1F JSR FSUB Z*Z-FLOAT(INT)
1E4B A2 03 LDX =3 4 BYTE MOVE
1E4D B5 08 ZSAV LDA X1,X
1E4F 95 10 STA Z,X SAVE EXP/MANT1 IN Z
1E51 95 04 STA X2,X COPY EXP/MANT1 TO EXP/MANT2
1E53 CA DEX
1E54 10 F7 BPL ZSAV
1E56 20 77 1F JSR FMUL Z*Z
1E59 A2 03 LDX =3 4 BYTE MOVE
1E5B BD DC 1E LA2 LDA A2,X
1E5E 95 04 STA X2,X LOAD EXP/MANT2 WITH A2
1E60 B5 08 LDA X1,X
1E62 95 18 STA SEXP,X SAVE EXP/MANT1 AS SEXP
1E64 CA DEX
1E65 10 F4 BPL LA2
1E67 20 50 1F JSR FADD Z*Z+A2
1E6A A2 03 LDX =3 4 BYTE MOVE
1E6C BD E0 1E LB2 LDA B2,X
1E6F 95 04 STA X2,X LOAD EXP/MANT2 WITH B2
1E71 CA DEX
1E72 10 F8 BPL LB2
1E74 20 9D 1F JSR FDIV T=B/(Z*Z+A2)
1E77 A2 03 LDX =3 4 BYTE MOVE
1E79 B5 08 DLOAD LDA X1,X
1E7B 95 14 STA T,X SAVE EXP/MANT1 AS T
1E7D BD E4 1E LDA C2,X
1E80 95 08 STA X1,X LOAD EXP/MANT1 WITH C2
1E82 B5 18 LDA SEXP,X
1E84 95 04 STA X2,X LOAD EXP/MANT2 WITH SEXP
1E86 CA DEX
1E87 10 F0 BPL DLOAD
1E89 20 77 1F JSR FMUL Z*Z*C2

1E8C 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
1E8F A2 03 LDX =3 4 BYTE TRANSFER
1E91 B5 14 LTMP LDA T,X
1E93 95 08 STA X1,X LOAD EXP/MANT1 WITH T
1E95 CA DEX
1E96 10 F9 BPL LTMP
1E98 20 4A 1F JSR FSUB C2*Z*Z-B2/(Z*Z+A2)
1E9B A2 03 LDX =3 4 BYTE TRANSFER
1E9D BD E8 1E LDD LDA D,X
1EA0 95 04 STA X2,X LOAD EXP/MANT2 WITH D
1EA2 CA DEX
1EA3 10 F8 BPL LDD
1EA5 20 50 1F JSR FADD D+C2*Z*Z-B2/(Z*Z+A2)
1EA8 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
1EAB A2 03 LDX =3 4 BYTE TRANSFER
1EAD B5 10 LFA LDA Z,X
1EAF 95 08 STA X1,X LOAD EXP/MANT1 WITH Z
1EB1 CA DEX
1EB2 10 F9 BPL LFA
1EB4 20 4A 1F JSR FSUB -Z+D+C2*Z*Z-B2/(Z*Z+A2)
1EB7 A2 03 LDX =3 4 BYTE TRANSFER
1EB9 B5 10 LF3 LDA Z,X
1EBB 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
1EBD CA DEX
1EBE 10 F9 BPL LF3
1EC0 20 9D 1F JSR FDIV Z/(****)
1EC3 A2 03 LDX =3 4 BYTE TRANSFER
1EC5 BD E5 1D LD12 LDA MHLF,X
1EC8 95 04 STA X2,X LOAD EXP/MANT2 WITH .5
1ECA CA DEX
1ECB 10 F8 BPL LD12
1ECD 20 50 1F JSR FADD +Z/(***)+.5
1ED0 38 SEC ADD INT TO EXPONENT WITH CARRY SET
1ED1 A5 1C LDA INT TO MULTIPLY BY
1ED3 65 08 ADC X1 2**(INT+1)
1ED5 85 08 STA X1 RETURN RESULT TO EXPONENT
1ED7 60 RTS RETURN ANS=(.5+Z/(-Z+D+C2*Z*Z-B2/(Z*Z+A2))*2**(INT+1)
1ED8 80 5C L2E DCM 1.4426950409 LOG BASE 2 OF E
 55 1E
1EDC 86 57 A2 DCM 87.417497202
 6A E1
1EE0 89 4D B2 DCM 617.9722695
 3F 1D
1EE4 7B 46 C2 DCM .03465735903
 FA 70
1EE8 83 4F D DCM 9.9545957821
 A3 03
 *
 *
 * BASIC FLOATING POINT ROUTINES
 *
1F00 ORG $1F00 START OF BASIC FLOATING POINT ROUTINES
1F00 18 ADD CLC CLEAR CARRY
1F01 A2 02 LDX =$02 INDEX FOR 3-BYTE ADD
1F03 B5 09 ADD1 LDA M1,X
1F05 75 05 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
1F07 95 09 STA M1,X
1F09 CA DEX ADVANCE INDEX TO NEXT MORE SIGNIF.BYTE
1F0A 10 F7 BPL ADD1 LOOP UNTIL DONE.
1F0C 60 RTS RETURN
1F0D 06 03 MD1 ASL SIGN CLEAR LSB OF SIGN
1F0F 20 12 1F JSR ABSWAP ABS VAL OF MANT1, THEN SWAP MANT2
1F12 24 09 ABSWAP BIT M1 MANT1 NEG?
1F14 10 05 BPL ABSWP1 NO,SWAP WITH MANT2 AND RETURN

1F16 20 8F 1F JSR FCOMPL YES, COMPLIMENT IT.
1F19 E6 03 INC SIGN INCR SIGN, COMPLEMENTING LSB
1F1B 38 ABSWP1 SEC SET CARRY FOR RETURN TO MUL/DIV
 *
 * SWAP EXP/MANT1 WITH EXP/MANT2
 *
1F1C A2 04 SWAP LDX =$04 INDEX FOR 4-BYTE SWAP.
1F1E 94 0B SWAP1 STY E-1,X
1F20 B5 07 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
1F22 B4 03 LDY X2-1,X EXP/MANT2 AND LEAVEA COPY OF
1F24 94 07 STY X1-1,X MANT1 IN E(3BYTES). E+3 USED.
1F26 95 03 STA X2-1,X
1F28 CA DEX ADVANCE INDEX TO NEXT BYTE
1F29 D0 F3 BNE SWAP1 LOOP UNTIL DONE.
1F2B 60 RTS
 *
 *
 *
 * CONVERT 16 BIT INTEGER IN M1(HIGH) AND M1+1(LOW) TO F.P.
 * RESULT IN EXP/MANT1. EXP/MANT2 UNEFFECTED
 *
 *
1F2C A9 8E FLOAT LDA =$8E
1F2E 85 08 STA X1 SET EXPN TO 14 DEC
1F30 A9 00 LDA =0 CLEAR LOW ORDER BYTE
1F32 85 0B STA M1+2
1F34 F0 08 BEQ NORM NORMALIZE RESULT
1F36 C6 08 NORM1 DEC X1 DECREMENT EXP1
1F38 06 0B ASL M1+2
1F3A 26 0A ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT
1F3C 26 09 ROL M1
1F3E A5 09 NORM LDA M1 HIGH ORDER MANT1 BYTE
1F40 0A ASL UPPER TWO BITS UNEQUAL?
1F41 45 09 EOR M1
1F43 30 04 BMI RTS1 YES,RETURN WITH MANT1 NORMALIZED
1F45 A5 08 LDA X1 EXP1 ZERO?
1F47 D0 ED BNE NORM1 NO, CONTINUE NORMALIZING
1F49 60 RTS1 RTS RETURN
 *
 *
 * EXP/MANT2-EXP/MANT1 RESULT IN EXP/MANT1
 *
1F4A 20 8F 1F FSUB JSR FCOMPL CMPL MANT1 CLEARS CARRY UNLESS ZERO
1F4D 20 5D 1F SWPALG JSR ALGNSW RIGHT SHIFT MANT1 OR SWAP WITH MANT2 ON CARRY
 *
 * ADD EXP/MANT1 AND EXP/MANT2 RESULT IN EXP/MANT1
 *
1F50 A5 04 FADD LDA X2
1F52 C5 08 CMP X1 COMPARE EXP1 WITH EXP2
1F54 D0 F7 BNE SWPALG IF UNEQUAL, SWAP ADDENDS OR ALIGN MANTISSAS
1F56 20 00 1F JSR ADD ADD ALIGNED MANTISSAS
1F59 50 E3 ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULTS
1F5B 70 05 BVS RTLOG OV: SHIFT MANT1 RIGHT. NOTE CARRY IS CORRECT SIGN
1F5D 90 BD ALGNSW BCC SWAP SWAP IF CARRY CLEAR, ELSE SHIFT RIGHT ARITH.
1F5F A5 09 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
1F61 0A ASL RIGHT ARITH SHIFT
1F62 E6 08 RTLOG INC X1 INCR EXP1 TO COMPENSATE FOR RT SHIFT
1F64 F0 7E BEQ OVFL EXP1 OUT OF RANGE.
1F66 A2 FA RTLOG1 LDX =$FA INDEX FOR 6 BYTE RIGHT SHIFT
1F68 A9 80 ROR1 LDA =$80
1F6A B0 01 BCS ROR2
1F6C 0A ASL
1F6D 56 0F ROR2 LSR E+3,X SIMULATE ROR E+3,X
1F6F 15 0F ORA E+3,X

1F71 95 0F STA E+3,X
1F73 E8 INX NEXT BYTE OF SHIFT
1F74 D0 F2 BNE ROR1 LOOP UNTIL DONE
1F76 60 RTS RETURN
 *
 *
 * EXP/MANT1 X EXP/MANT2 RESULT IN EXP/MANT1
 *
1F77 20 0D 1F FMUL JSR MD1 ABS. VAL OF MANT1, MANT2
1F7A 65 08 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXPONENT
1F7C 20 CD 1F JSR MD2 CHECK PRODUCT EXP AND PREPARE FOR MUL
1F7F 18 CLC CLEAR CARRY
1F80 20 66 1F MUL1 JSR RTLOG1 MANT1 AND E RIGHT.(PRODUCT AND MPLIER)
1F83 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PRODUCT
1F85 20 00 1F JSR ADD ADD MULTIPLICAN TO PRODUCT
1F88 88 MUL2 DEY NEXT MUL ITERATION
1F89 10 F5 BPL MUL1 LOOP UNTIL DONE
1F8B 46 03 MDEND LSR SIGN TEST SIGN (EVEN/ODD)
1F8D 90 AF NORMX BCC NORM IF EXEN, NORMALIZE PRODUCT, ELSE COMPLEMENT
1F8F 38 FCOMPL SEC SET CARRY FOR SUBTRACT
1F90 A2 03 LDX =$03 INDEX FOR 3 BYTE SUBTRACTION
1F92 A9 00 COMPL1 LDA =$00 CLEAR A
1F94 F5 08 SBC X1,X SUBTRACT BYTE OF EXP1
1F96 95 08 STA X1,X RESTORE IT
1F98 CA DEX NEXT MORE SIGNIFICANT BYTE
1F99 D0 F7 BNE COMPL1 LOOP UNTIL DONE
1F9B F0 BC BEQ ADDEND NORMALIZE (OR SHIFT RIGHT IF OVERFLOW)
 *
 *
 * EXP/MANT2 / EXP/MANT1 RESULT IN EXP/MANT1
 *
1F9D 20 0D 1F FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2
1FA0 E5 08 SBC X1 SUBTRACT EXP1 FROM EXP2
1FA2 20 CD 1F JSR MD2 SAVE AS QUOTIENT EXP
1FA5 38 DIV1 SEC SET CARRY FOR SUBTRACT
1FA6 A2 02 LDX =$02 INDEX FOR 3-BYTE INSTRUCTION
1FA8 B5 05 DIV2 LDA M2,X
1FAA F5 0C SBC E,X SUBTRACT A BYTE OF E FROM MANT2
1FAC 48 PHA SAVE ON STACK
1FAD CA DEX NEXT MORE SIGNIF BYTE
1FAE 10 F8 BPL DIV2 LOOP UNTIL DONE
1FB0 A2 FD LDX =$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
1FB2 68 DIV3 PLA PULL A BYTE OF DIFFERENCE OFF STACK
1FB3 90 02 BCC DIV4 IF MANT2<E THEN DONT RESTORE MANT2
1FB5 95 08 STA M2+3,X
1FB7 E8 DIV4 INX NEXT LESS SIGNIF BYTE
1FB8 D0 F8 BNE DIV3 LOOP UNTIL DONE
1FBA 26 0B ROL M1+2
1FBC 26 0A ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
1FBE 26 09 ROL M1
1FC0 06 07 ASL M2+2
1FC2 26 06 ROL M2+1 SHIFT DIVIDEND LEFT
1FC4 26 05 ROL M2
1FC6 B0 1C BCS OVFL OVERFLOW IS DUE TO UNNORMALIZED DIVISOR
1FC8 88 DEY NEXT DIVIDE ITERATION
1FC9 D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS
1FCB F0 BE BEQ MDEND NORMALIZE QUOTIENT AND CORRECT SIGN
1FCD 86 0B MD2 STX M1+2
1FCF 86 0A STX M1+1 CLR MANT1 (3 BYTES) FOR MUL/DIV
1FD1 86 09 STX M1
1FD3 B0 0D BCS OVCHK IF EXP CALC SET CARRY, CHECK FOR OVFL
1FD5 30 04 BMI MD3 IF NEG NO UNDERFLOW
1FD7 68 PLA POP ONE
1FD8 68 PLA RETURN LEVEL

1FD9 90 B2 BCC NORMX CLEAR X1 AND RETURN
1FDB 49 80 MD3 EOR =$80 COMPLIMENT SIGN BIT OF EXP
1FDD 85 08 STA X1 STORE IT
1FDF A0 17 LDY =$17 COUNT FOR 24 MUL OR 23 DIV ITERATIONS
1FE1 60 RTS RETURN
1FE2 10 F7 OVCHK BPL MD3 IF POS EXP THEN NO OVERFLOW
1FE4 00 OVFL BRK
 *
 *
 * CONVERT EXP/MANT1 TO INTEGER IN M1 (HIGH) AND M1+1(LOW)
 * EXP/MANT2 UNEFFECTED
 *
1FE5 20 5F 1F JSR RTAR SHIFT MANT1 RT AND INCREMENT EXPNT
1FE8 A5 08 FIX LDA X1 CHECK EXPONENT
1FEA C9 8E CMP =$8E IS EXPONENT 14?
1FEC D0 F7 BNE FIX-3 NO, SHIFT
1FEE 60 RTRN RTS RETURN
 END

===

Errata for Rankin's 6502 Floating Point Routines by Roy Rankin

In the November/December issue of Dr. Dobb's Journal Roy Rankin published three
error corrections to the Floating Point Routines presented above.

Dr. Dobb's Journal, November/December 1976, page 57.

ERRATA FOR RANKIN'S 6502
FLOATING POINT ROUTINES

Sept. 22, 1976

Dear Jim,

Subsequent to the publication of "Floating Point
Routines for the 6502" (Vol.1, No.7) an error which I made in
the LOG routine came to light which causes improper results
if the argument is less than 1. The following changes will
correct the error.

1. After: CONT JSR SWAP (1D07)
 Add: A2 00 LDX =0 LOAD X FOR HIGH BYTE OF EXPONENT

2. After: STA M1+1 (1D12)
 Delete: LDA =0
 STA M1
 Add: 10 01 BPL *+3 IS EXPONENT NEGATIVE
 CA DEX YES, SET X TO $FF
 86 09 STX M1 SET UPPER BYTE OF EXPONENT

3. Changes 1 and 2 shift the code by 3 bytes so add 3 to the
addresses of the constants LN10 through MHLF whenever
they are referenced. For example the address of LN10 changes
from 1DCD to 1DD0. Note also that the entry point for
LOG10 becomes 1DBF. The routines stays within the page
and hence the following routines (EXP etc.) are not affected.

Yours truly,

Roy Rankin
Dep. of Mech. Eng.
Stanford University

===

Floating Point Implementation in the Apple II by Steve Wozniak

An almost identical set of the above routines appeared in the original manual
for the Apple II (the Red Book, January 1978). Documentation for these routines
appeared in another book, the Wozpak II, in November 1979.

Woz 6502 Floating Point Routines

Apple II Reference Manual (Red Book), January 1978, pages 94-95.

 * *
 * APPLE-II FLOATING *
 * POINT ROUTINES *
 * *
 * COPYRIGHT 1977 BY *
 * APPLE COMPUTER INC. *
 * *
 * ALL RIGHTS RESERVED *
 * *
 * S. WOZNIAK *
 * *

 TITLE "FLOATING POINT ROUTINES"
 SIGN EPZ $F3
 X2 EPZ $F4
 M2 EPZ $F5
 X1 EPZ $F8
 M1 EPZ $F9
 E EPZ $FC
 OVLOC EQU $3F5
 ORG $F425
F425: 18 ADD CLC CLEAR CARRY
F426: A2 02 LDX #$2 INDEX FOR 3-BYTE ADD.
F428: B5 F9 ADD1 LDA M1,X
F42A: 75 F5 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
F42C: 95 F9 STA M1,X
F42E: CA DEX INDEX TO NEXT MORE SIGNIF. BYTE.
F42F: 10 F7 BPL ADD1 LOOP UNTIL DONE.
F431: 60 RTS RETURN
F432: 06 F3 MD1 ASL SIGN CLEAR LSB OF SIGN.
F434: 20 37 F4 JSR ABSWAP ABS VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ABSWAP BIT M1 MANT1 NEGATIVE?
F439: 10 05 BPL ABSWAP1 NO, SWAP WITH MANT2 AND RETURN.
F43B: 20 A4 F4 JSR FCOMPL YES, COMPLEMENT IT.
F43E: E6 F3 INC SIGN INCR SIGN, COMPLEMENTING LSB.
F440: 38 ABSWAP1 SEC SET CARRY FOR RETURN TO MUL/DIV.
F441: A2 04 SWAP LDX #$4 INDEX FOR 4 BYTE SWAP.
F443: 94 FB SWAP1 STY E-1,X
F445: B5 F7 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
F447: B4 F3 LDY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY X1-1,X MANT1 IN E (3 BYTES). E+3 USED
F44B: 95 F3 STA X2-1,X
F44D: CA DEX ADVANCE INDEX TO NEXT BYTE

F44E: D0 F3 BNE SWAP1 LOOP UNTIL DONE.
F450: 60 RTS RETURN
F451: A9 8E FLOAT LDA #$8E INIT EXP1 TO 14,
F453: 85 F8 STA X1 THEN NORMALIZE TO FLOAT.
F455: A5 F9 NORM1 LDA M1 HIGH-ORDER MANT1 BYTE.
F457: C9 C0 CMP #$C0 UPPER TWO BITS UNEQUAL?
F459: 30 0C BMI RTS1 YES, RETURN WITH MANT1 NORMALIZED
F45B: C6 F8 DEC X1 DECREMENT EXP1.
F45D: 06 FB ASL M1+2
F45F: 26 FA ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT.
F461: 26 F9 ROL M1
F463: A5 F8 NORM LDA X1 EXP1 ZERO?
F465: D0 EE BNE NORM1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 RTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOMPL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWPALGN JSR ALGNSWP RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5 F4 FADD LDA X2
F470: C5 F8 CMP X1 COMPARE EXP1 WITH EXP2.
F472: D0 F7 BNE SWPALGN IF #,SWAP ADDENDS OR ALIGN MANTS.
F474: 20 25 F4 JSR ADD ADD ALIGNED MANTISSAS.
F477: 50 EA ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT M1 RIGHT, CARRY INTO SIGN
F47B: 90 C4 ALGNSWP BCC SWAP SWAP IF CARRY CLEAR,
 * ELSE SHIFT RIGHT ARITH.
F47D: A5 F9 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
F47F: 0A ASL RIGHT ARITH SHIFT.
F480: E6 F8 RTLOG INC X1 INCR X1 TO ADJUST FOR RIGHT SHIFT
F482: F0 75 BEQ OVFL EXP1 OUT OF RANGE.
F484: A2 FA RTLOG1 LDX #$FA INDEX FOR 6:BYTE RIGHT SHIFT.
F486: 76 FF ROR1 ROR E+3,X
F488: E8 INX NEXT BYTE OF SHIFT.
F489: D0 FB BNE ROR1 LOOP UNTIL DONE.
F48B: 60 RTS RETURN.
F48C: 20 32 F4 FMUL JSR MD1 ABS VAL OF MANT1, MANT2
F48F: 65 F8 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXP
F491: 20 E2 F4 JSR MD2 CHECK PROD. EXP AND PREP. FOR MUL
F494: 18 CLC CLEAR CARRY FOR FIRST BIT.
F495: 20 84 F4 MUL1 JSR RTLOG1 M1 AND E RIGHT (PROD AND MPLIER)
F498: 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PROD
F49A: 20 25 F4 JSR ADD ADD MULTIPLICAND TO PRODUCT.
F49D: 88 MUL2 DEY NEXT MUL ITERATION.
F49E: 10 F5 BPL MUL1 LOOP UNTIL DONE.
F4A0: 46 F3 MDEND LSR SIGN TEST SIGN LSB.
F4A2: 90 BF NORMX BCC NORM IF EVEN,NORMALIZE PROD,ELSE COMP
F4A4: 38 FCOMPL SEC SET CARRY FOR SUBTRACT.
F4A5: A2 03 LDX #$3 INDEX FOR 3 BYTE SUBTRACT.
F4A7: A9 00 COMPL1 LDA #$0 CLEAR A.
F4A9: F5 F8 SBC X1,X SUBTRACT BYTE OF EXP1.
F4AB: 95 F8 STA X1,X RESTORE IT.
F4AD: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4AE: D0 F7 BNE COMPL1 LOOP UNTIL DONE.
F4B0: F0 C5 BEQ ADDEND NORMALIZE (OR SHIFT RT IF OVFL).
F4B2: 20 32 F4 FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2.
F4B5: E5 F8 SBC X1 SUBTRACT EXP1 FROM EXP2.
F4B7: 20 E2 F4 JSR MD2 SAVE AS QUOTIENT EXP.
F4BA: 38 DIV1 SEC SET CARRY FOR SUBTRACT.
F4BB: A2 02 LDX #$2 INDEX FOR 3-BYTE SUBTRACTION.
F4BD: B5 F5 DIV2 LDA M2,X
F4BF: F5 FC SBC E,X SUBTRACT A BYTE OF E FROM MANT2.
F4C1: 48 PHA SAVE ON STACK.
F4C2: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4C3: 10 F8 BPL DIV2 LOOP UNTIL DONE.
F4C5: A2 FD LDX #$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
F4C7: 68 DIV3 PLA PULL BYTE OF DIFFERENCE OFF STACK

F4C8: 90 02 BCC DIV4 IF M2<E THEN DON'T RESTORE M2.
F4CA: 95 F8 STA M2+3,X
F4CC: E8 DIV4 INX NEXT LESS SIGNIFICANT BYTE.
F4CD: D0 F8 BNE DIV3 LOOP UNTIL DONE.
F4CF: 26 FB ROL M1+2
F4D1: 26 FA ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
F4D3: 26 F9 ROL M1
F4D5: 06 F7 ASL M2+2
F4D7: 26 F6 ROL M2+1 SHIFT DIVIDEND LEFT
F4D9: 26 F5 ROL M2
F4DB: B0 1C BCS OVFL OVFL IS DUE TO UNNORMED DIVISOR
F4DD: 88 DEY NEXT DIVIDE ITERATION.
F4DE: D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS.
F4E0: F0 BE BEQ MDEND NORM. QUOTIENT AND CORRECT SIGN.
F4E2: 86 FB MD2 STX M1+2
F4E4: 86 FA STX M1+1 CLEAR MANT1 (3 BYTES) FOR MUL/DIV.
F4E6: 86 F9 STX M1
F4E8: B0 0D BCS OVCHK IF CALC. SET CARRY,CHECK FOR OVFL
F4EA: 30 04 BMI MD3 IF NEG THEN NO UNDERFLOW.
F4EC: 68 PLA POP ONE RETURN LEVEL.
F4ED: 68 PLA
F4EE: 90 B2 BCC NORMX CLEAR X1 AND RETURN.
F4F0: 49 80 MD3 EOR #$80 COMPLEMENT SIGN BIT OF EXPONENT.
F4F2: 85 F8 STA X1 STORE IT.
F4F4: A0 17 LDY #$17 COUNT 24 MUL/23 DIV ITERATIONS.
F4F6: 60 RTS RETURN.
F4F7: 10 F7 OVCHK BPL MD3 IF POSITIVE EXP THEN NO OVFL.
F4F9: 4C F5 03 OVFL JMP OVLOC
 ORG $F63D
F63D: 20 7D F4 FIX1 JSR RTAR
F640: A5 F8 FIX LDA X1
F642: 10 13 BPL UNDFL
F644: C9 8E CMP #$8E
F646: D0 F5 BNE FIX1
F648: 24 F9 BIT M1
F64A: 10 0A BPL FIXRTS
F64C: A5 FB LDA M1+2
F64E: F0 06 BEQ FIXRTS
F650: E6 FA INC M1+1
F652: D0 02 BNE FIXRTS
F654: E6 F9 INC M1
F656: 60 FIXRTS RTS
F657: A9 00 UNDFL LDA #$0
F659: 85 F9 STA M1
F65B: 85 FA STA M1+1
F65D: 60 RTS

Wozpak][, November 1979, pages 109-115.

FLOATING POINT PACKAGE

The mantissa-exponent, or 'floating point' numerical representation is
widely used by computers to express values with a wide dynamic range. With
floating point representation, the number 7.5 x 10^22 requires no more
memory to store than the number 75 does. We have allowed for binary
floating point arithmetic on the APPLE][computer by providing a useful
subroutine package in ROM, which performs the common arithmetic functions.
Maximum precision is retained by these routines and overflow conditions
such as 'divide by zero' are trapped for the user. The 4-byte floating
point number representation is compatible with future APPLE products such
as floating point BASIC.

A small amount of memory in Page Zero is dedicated to the floating point
workspace, including the two floating-point accumulators, FP1 and FP2.
After placing operands in these accumulators, the user calls subroutines in
the ROM which perform the desired arithmetic operations, leaving results in
FP1. Should an overflow condition occur, a jump to location $3F5 is
executed, allowing a user routine to take appropriate action.

 FLOATING POINT REPRESENTATION

 _____ _____ _____ _____
 | | | | | | | |
 | | | HI | | | | LOW |
 |_____| |_____| |_____| |_____|

 Exponent Signed Mantissa

1. Mantissa

The floating point mantissa is stored in two's complement representation
with the sign at the most significant bit (MSB) position of the high-order
mantissa byte. The mantissa provides 24 bits of precision, including sign,
and can represent 24-bit integers precisely. Extending precision is simply
a matter of adding bytes at the low order end of the mantissa.

Except for magnitudes less than 2^-128 (which lose precision) mantissa are
normalized by the floating point routines to retain maximum precision.
That is, the numbers are adjusted so that the upper two high-order mantissa
bits are unequal.

 HIGH-ORDER MANTISSA BYTE
 01.XXXXXX Positive mantissa.
 10.XXXXXX Negative mantissa.
 00.XXXXXX Unnormalized mantissa.
 11.XXXXXX Exponent = -128.

2. Exponent.

The exponent is a binary scaling factor (power of two) which is applied to
the mantissa. Ranging from -128 to +127, the exponent is stored in
standard two's complement representation except for the sign bit which is
complemented. This representation allows direct comparison of exponents,
since they are stored in increasing numerical sequence. The most negative
exponent, corresponding to the smallest magnItude, -128, is stored as $00
($ means hexidecimal) and the most positive, +127, is stored as $FF (all
ones).

 EXPONENT STORED AS

 +127 11111111 ($FF)

 +3 10000011 ($83)
 +2 10000010 ($82)

 +1 10000001 ($81)
 0 10000000 ($80)
 -1 01111111 ($7F)
 -2 01111110 ($7E)
 -3 01111101 ($7D)

 -128 00000000 ($00)

The smallest magnitude which can be represented is 2^-150.

 _____ _____ _____ _____
 | | | | | | | |
 | 0 | | 0 | | 0 | | 1 |
 |_____| |_____| |_____| |_____|

 HIGH LOW
 EXP MANTISSA

The largest positive magnitude which can be represented is +2^128-1.

 _____ _____ _____ _____
 | | | | | | | |
 | $7F | | $7F | | $FF | | $FF |
 |_____| |_____| |_____| |_____|

 EXP MANTISSA

 FLOATING POINT REPRESENTATION EXAMPLES

 DECIMAL HEX HEX
 NUMBER EXPONENT MANTISSA

 + 3 81 60 00 00
 + 4 82 40 00 00
 + 5 82 50 00 00
 + 7 82 70 00 00
 +12 83 60 00 00
 +15 83 78 00 00
 +17 84 44 00 00
 +20 84 50 00 00
 +60 85 78 00 00

 - 3 81 A0 00 00
 - 4 81 80 00 00
 - 5 82 B0 00 00
 - 7 82 90 00 00
 -12 83 A0 00 00
 -15 83 88 00 00
 -17 84 BC 00 00
 -20 84 B0 00 00
 -60 85 88 00 00

FLOATING POINT SUBROUTINE DESCRIPTIONS

FCOMPL subroutine (address $F4A4)

Purpose: FCOMPL is used to negate floating point numbers.

Entry: A normalized or unnormalized value is in FP1 (floating point
accumulator 1).

Uses: NORM, RTLOG.

Exit: The value in FP1 is negated and then normalized to retain precision.
The 3-byte FP1 extension, E, may also be altered but FP2 and SIGN are not
disturbed. The 6502 A-REG is altered and the X-REG is cleared. The Y-REG
is not disturbed.

Caution: Attempting to negate -2^128 will result in an overflow since
+2^128 is not representable, and a jump to location $3F5 will be executed,
with the following contents in FP1.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | 0 | | $80 | | 0 | | 0 |
 |_____| |_____| |_____| |_____|

 X1 M1

Example: Prior to calling FCOMPL, FP1 contains +15.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $78 | | 0 | | 0 | (+15)
 |_____| |_____| |_____| |_____|

 X1 M1

After calling FCOMPL as a subroutine, FP1 contains -15.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $88 | | 0 | | 0 | (+15)
 |_____| |_____| |_____| |_____|

 X1 M1

FADD subroutine (address $F46E)

Purpose: To add two numbers in floating point form.

Entry: The two addends are in FP1 and FP2 respectively. For maximum

precision, both should be normalized.

Uses: SWPALGN, ADD, NORM, RTLOG.

Exit: The normalized sum is left in FP1. FP2 contains the addend of
greatest magnitude. E is altered but sign is not. The A-REG is altered
and the X-REG is cleared. The sum mantissa is truncated to 24 bits.

Caution: Overflow may result if the sum is less that -2^128 or greater than
+2^128-1. If so, a jump to location $3F5 is executed leaving 0 in X1, and
twice the proper sum in the mantissa M1. The sign bit is left in the
carry, 0 for positive, 1 for negative.

 _____ __________
 | | | |
FP1: | 0 | | X.YYY... |
 |_____| |__________|

 X1 M1

(For carry=0, true sum=+X.YYY x 2^128)

Example: Prior to calling FADD, FP1 contains +12 and FP2 contains -5.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (-5)
 |_____| |_____| |_____| |_____|

 X2 M2

After calling FADD, FP1 contains +7 (FP2 contains +12).

 _____ _____ _____ _____
 | | | | | | | |
FP1 | $82 | | $70 | | 0 | | 0 | (+7)
 |_____| |_____| |_____| |_____|

 X1 M1

FSUB subroutine (address $F468)

Purpose: To subtract two floating point numbers.

Entry: The minuend is in FP1 and the subtrahend is in FP2. Both should be
normalized to retain maximum precision prior to calling FSUB.

Uses: FCOMPL, ALGNSWP, FADD, ADD, NORM, RTLOG.

Exit: The normalized difference is in FP1 with the mantissa truncated to 24
bits. FP2 holds either the minued or the negated subtrahend, whichever is
of greater magnitude. E is altered but SIGN and SCR are not. the A-REG is
altered and the X-REG is cleared. The Y-REG is not disturbed.

Cautions: An exit to location S3F5 is taken if the result is less than
-2^128 or greater than +2^128-1. or if the subtrahend is -2^128.

Example: Prior to calling FSUB, FP1 contains +7 (minuend) and FP2 contalns
-5 (subtrahend).

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $82 | | $70 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (- 5)
 |_____| |_____| |_____| |_____|

 X2 M2

After calling FSUB, FP1 contains +12 and FP2 contains +7.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

FMUL subroutine (address $F48C)

Purpose: To multiply floating point numbers.

Entry: The multiplicand and multiplier must reside in FP1 and FP2
respectively. Both should be normalized prior to calling FMUL to retain
maximum precision.

Uses: MD1, MD2, RTLOG1, ADD, MDEND.

Exit: The signed normalized floating point product is left in FP1. M1 is
truncated to contain the 24 most significant mantissa bits (including
sign). The absolute value of the multiplier mantissa (M2) is left in FP2.
E, SIGN, and SCR are altered. The A- and X-REGs are altered and the Y-REG
contains $FF upon exit.

Cautions: An exit to location $3F5 is taken if the product is less than
-2^128 or greater than +2^128-1.

Notes: FMUL will run faster if the absolute value of the multiplier

mantissa contains fewer '1's than the absolute value of the multiplicand
mantissa.

Example: Prior to calling FMUL, FP1 contains +12 and FP2 contains -5.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (- 5)
 |_____| |_____| |_____| |_____|

 X2 M2

After calling FMUL, FP1 contains -60 and FP2 contains +5.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $85 | | $88 | | 0 | | 0 | (-60)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2: | $82 | | $50 | | 0 | | 0 | (+ 5)
 |_____| |_____| |_____| |_____|

 X2 M2

FDIV subroutine (addr $F4B2)

Purpose: To perform division of floating point numbers.

Entry: The normalized dividend is in FP2 and the normalized divisor is in
FP1.

Exit: The signed normalized floating point quotient is left in FP1. The
mantissa (M1) is truncated to 24 bits. The 3-bit M1 extension (E) contains
the absolute value of the divisor mantissa. MD2, SIGN, and SCR are
altered. The A- and X-REGs are altered and the Y-REG is cleared.

Uses: MD1, MD2, MDEND.

Cautions: An exit to location $3F5 is taken if the quotient is less than
-2^128 or greater than +2^128-1

Notes: MD2 contains the remainder mantissa (equivalent to the MOD
function). The remainder exponent is the same as the quotient exponent, or
1 less if the dividend mantissa magnitude is less than the divisor mantissa

magnitude.

Example: Prior to calling FDIV, FP1 contains -60 (dividend), and FP2
contains +12 (divisor).

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $85 | | $80 | | 0 | | 0 | (-60)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2 | $83 | | $60 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

After calling FMUL, FP1 contains -5 and M2 contains 0.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $82 | | $B0 | | 0 | | 0 | (-5)
 |_____| |_____| |_____| |_____|

 X1 M1

FLOAT Subroutine (address $F451)

Purpose: To convert integers to floating point representation.

Entry: A signed (two's complement) 2-byte integer is stored in M1
(high-order byte) and M1+1 (low-order byte). M1+2 must be cleared by user
prior to entry.

Uses: NORM1.

Exit: The normalized floating point equivalent is left in FP1. E, FP2,
SIGN, and SCR are not disturbed. The A-REG contains a copy of the
high-order mantissa byte upon exit but the X- and Y-REGs are not disturbed.
The carry is cleared.

Notes: To float a 1-byte integer, place it in M1+1 and clear M1 as well as
M1+2 prior to calling FLOAT.

FLOAT takes approximately 3 msec. lonqer to convert zero to floating point
form than other arguments. The user may check for zero prior to calling
FLOAT and increase throughput.

 *
 * LOW-ORDER INT. BYTE IN A-REG
 * HIGH-ORDER BYTE IN Y-REG
 *
85 FA XFLOAT STA M1+1

84 F9 STY M1 INIT MANT1
A0 00 LDY #$0
84 FB STY M1+2
05 D9 ORA M1 CHK BOTH
 BYTES FOR
D0 03 BNE TOFLOAT ZERO
85 F8 STA X1 IF SO CLR X1
60 RTS AND RETURN
4C 51 F4 TOFLOAT JMP FLOAT ELSE FLOAT
 INTEGER

Example: Float +274 ($0112 hex)

 CALLING SEQUENCE

A0 01 LDY #$01 HIGH-ORDER
 INTEGER BYTE
A9 12 LDA #$12 LOW-ORDER
 INTEGER BYTE
84 F9 STY M1
85 FA STA M1+1
A9 00 LDA #$00
85 F8 STA M1+2
20 51 F4 JSR FLOAT

Upon returning from FLOAT, FP1 contains the floating point representation
of +274.

 _____ _____ _____ _____
 | | | | | | | |
FP1 | $88 | | $44 | | $80 | | 0 | (+274)
 |_____| |_____| |_____| |_____|

 X1 M1

FIX subroutine (address $F640)

Purpose: To extract the integer portion of a floating point number with
truncation (ENTIER function).

Entry: A floating point value is in FP1. It need not be normalized.

Uses: RTAR.

Exit: The two-byte signed two's complement representation of the integer
portion is left in M1 (high-order byte) and M1+1 (low-order byte). The
floating point values +24.63 and -61.2 are converted to the integers +24
and -61 respectively. FP1 and E are altered but FP2, E, SIGN, and SCR are
not. The A- and X-REGs are altered but the Y-REG is not.

Example: The floating point value +274 is in FP1 prior to calling FIX.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $88 | | $44 | | $80 | | 0 | (+274)

 |_____| |_____| |_____| |_____|

 X1 M1

After calling FIX, M1 (high-order byte) and M1+1 (low-order byte) contain
the integer representation of +274 ($0112).

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $8E | | $01 | | $12 | | 0 |
 |_____| |_____| |_____| |_____|

 X1 M1

Note: FP1 contains an unnormalized representation of +274 upon exit.

NORM Subroutine (address $F463)

Purpose: To normalize the value in FP1, thus insuring maximum precision.

Entry: A normalized or unnormalized value is in FP1.

Exit: The value in FP1 is normalized. A zero mantissa will exit with X1=0
(2 exponent). If the exponent on exit is -128 (X1=0) then the mantissa
(M1) is not necessarily normalized (with the two high-order mantissa bits
unequal). E, FP2, SIGN, AND SCR are not distubed. The A-REG is disturbed
but the X- and Y-REGs are not. The carry is set.

Example: FP1 contains +12 in unnormalized form (as .0011 x 2).

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $86 | | $0C | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 x1 M1

Upon exit from NORM, FP1 contains +12 in normalized form (as 1.1 x 2).

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

 X1 M1

NORM1 subroutine (address $F455)

Purpose: To normalize a floating point value in FP1 when it is known the
exponent is not -128 (X1=0) upon entry.

Entry: An unnormalized number is in FP1. The exponent byte should not be 0
for normal use.

Exit: The normalized value is in FP1. E, FP2, SIGN, and SCR are not not
disturbed. The A-REG is altered but the X- and Y-REGs are not.

ADD Subroutine (address $F425)

Purpose: To add the two mantissas (M1 and M2) as 3-byte integers.

Entry: Two mantissas are in M1 (through M1+2) and M2 (through M2+2). They
should be aligned, that is with identical exponents, for use in the FADD
and FSUB subroutines.

Exit: the 24-bit integer sum is in M1 (high-order byte in M1, low-order
byte in M1+2). FP2, X1, E, SIGN and SCR are not disturbed. The A-REG
contains the high-order byte of the sum, the X-REG contains $FF and the
Y-REG is not altered. The carry is the '25th' sum bit.

Example: FP1 contains +5 and FP2 contains +7 prior to calling ADD.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $82 | | $50 | | 0 | | 0 | (+5)
 |_____| |_____| |_____| |_____|

 X1 M1

 _____ _____ _____ _____
 | | | | | | | |
FP2: | $82 | | $70 | | 0 | | 0 | (+7)
 |_____| |_____| |_____| |_____|

Upon exit, M1 contains the overflow value for +12. Note that the sign bit
is incorrect. This is taken care of with a call to the right shift
routine.

 _____ _____ _____ _____
 | | | | | | | |
FP: | $82 | | $C0 | | 0 | | 0 | (+12)
 |_____| |_____| |_____| |_____|

ABSWAP Subroutine (address $F437)

Purpose: To take the absolute value of FP1 and then swap FP1 with FP2.
Note that two sequential calls to ABSWAP will take the absolute values of
both FP1 and FP2 in preparation for a multiply or divide.

Entry: FP1 and FP2 contain floating point values.

Exit: The absolute value of the original FP1 contents are in FP2 and the
original FP2 contents are in FP1. The least significant bit of SIGN is
complemented if a negation takes place (if the original FP1 contents are
negative) by means of an increment. SCR and E are used. The A-REG

contains a copy of X2, the X-REG is cleared, and the Y-REG is not altered.

RTAR Subroutine (address $F47D)

Purpose: To shift M1 right one bit position while incrementing X1 to
compensate for scale. This is roughly the opposite of the NORM subroutine.

Entry: A normalized or unnormalized floating point value is in FP1.

Exit: The 6-byte field MANT1 and E is shifted right one bit arithmetically
and X1 is incremented by 1 to retain proper scale. The sign bit of MANT1
(MSB of M1) is unchanged. FP2, SIGN, and SCR are not disturbed. The A-REG
contains the least significant byte of E (E+2), the X-REG is cleared, and
the Y-REG is not disturbed.

Caution: If X1 increments of 0 (overflow) then an exit to location $3F5 is
taken, the A-REG contains the high-order MANT1 byte, M1 and X1 is cleared.
FP2, SIGN, SCR, and the X- and Y-REGs are not disturbed.

Uses: RTLOG

Example: Prior to calling RTAR, FP1 contains the normalized value -7.

 _____ _____ _____ _____
 | | | | | | | |
FP1 | $83 | | $A0 | | 0 | | 0 | (-7)
 |_____| |_____| |_____| |_____|

 X1 M1

After calling RTAR, FP1 contains the unnormalized value -7 (note that
precision is lost off the low-order end of M1).

 _____ _____ _____ _____
 | | | | | | | |
FP1 | $84 | | $D0 | | 0 | | 0 | (-7)
 |_____| |_____| |_____| |_____|

 X1 M1

Note: M1 sign bit is unchanged.

RTLOG subroutine (address $F480)

Purpose: To shift the 6-byte field MANT1 and E one bit to the right (toward
the least significant bit). The 6502 carry bit is shifted into the
high-order M1 bit. This is useful in correcting binary sum overflows.

Entry: A normalized or unnormalized floating point value is in FP1. The
carry must be cleared or set by the user since it is shifted Into the sign
bit of M1.

Exit: Same as RTAR except that the sign of M1 is not preserved (it is set

to the value of the carry bit on entry)

Caution: Same as RTAR.

Example: Prior to calling RTLOG, FP1 contains the normalized value -12 and
the carry is clear.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $83 | | $A0 | | 0 | | 0 | (-12)
 |_____| |_____| |_____| |_____|

 X1 M1

After calling RTLOG, M1 is shifted one bit to the right and the sign bit is
clear. X1 is incremented by 1.

 _____ _____ _____ _____
 | | | | | | | |
FP1: | $84 | | $50 | | 0 | | 0 | (+20)
 |_____| |_____| |_____| |_____|

 X1 M1

Note: The bit shifted off the end of MANT1 is rotated into the high-order
bit of the 3-byte extension E. The 3-byte E field is also shifted one bit
to the right.

RTLOG1 subroutine (address $F484)

Purpose: To shift MANT1 and E right one bit without adjusting X1. This is
used by the multiply loop. The carry is shifted into the sign bit of
MANT1.

Entry: M1 and E contain a 6-byte unsigned field. E is the 3-byte low-order
extension of MANT1.

Exit: Same as RTLOG except that X1 is not altered and an overflow exit
cannot occur.

MD2 subroutine (address $F4E2)

Purpose: To clear the 3-byte MANT1 field for FMUL and FDIV, check for
inital result exponent overflow (and underflow), and initialize the X-REG
to $17 for loop counting.

Entry: the X-REG is cleared by the user since it is placed in the 3 bytes
of MANT1. The A-REG contains the result of an exponent addition (FMUL) or
subtraction (FDIV). The carry and sign status bits should be set according
to this addition or subtraction for overflow and underflow determination.

Exit: The 3 bytes of M1 are cleared (or all set to the contents of the
X-REG on Entry) and the Y-REG is loaded with $17. The sign bit of the

A-REG is complemented and a copy of the A-REG is stored in X1. FP2, SIGN,
SCR, and the X-REG are not disturbed.

Uses: NORM.

Caution: Exponent overflow results in an exit to location $3F5. Exponent
underflow results in an early return from the calling subroutine (FDIV or
FMUL) with a floating point zero in FP1. Because MD2 pops a return address
off the stack, it may only be called by another subroutine.

###

